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1.  INTRODUCTION 
 
Impervious surfaces are defined as any surface which water cannot infiltrate. These surfaces are 
primarily associated with transportation (streets, highways, parking lots, sidewalks) and 
buildings.  Expansion of impervious surfaces increases water runoff, and is a primary 
determinant of stormwater runoff volumes, water quality of lakes of lakes and streams, and 
stream habitat quality in urbanized areas. Increases in impervious surfaces, and accompanying 
phosphorous, sediment and thermal loads, can have profound negative impacts to lakes and 
streams and habitat for fisheries. Percent impervious surface area has emerged as a key factor to 
explain and generally predict the degree of impact severity to streams and watersheds. It has 
been generally found that most stream health indicators decline when the impervious area of a 
watershed exceeds 10 percent (Schueler, 1994). Arnold and Gibbons (1996) suggest that 
impervious surface area provides a measure of land use that is closely correlated with these 
impacts, and more generally that the amount of impervious surface in a landscape is an important 
indicator of environmental and habitat quality in urban areas. In the area of urban climate, Yuan 
and Bauer (2006) have recently documented a strong relationship between amount of impervious 
surface area and land surface temperatures or the urban heat island effect. It follows that 
impervious surface information is fundamental for watershed planning and management and for 
urban planning and policy.  
 
Continued urban growth, expected to occur over the next three decades, should be accompanied 
by carefully designed and maintained stormwater runoff controls as required by new federal and 
state stormwater permits and Total Maximum Daily Load (TMDL) allocations for municipal 
stormwater sources. In Minnesota, there are more than 200 Municipal Separate Storm Sewer 
System (MS4) communities that are required by the Stormwater Program to begin stormwater 
pollution prevention planning and implementing urban best management practices. The MS4 
cities must identify best management practices and measurable goals associated with each 
minimum control measure. Quantifying impervious cover should be one of the first steps for 
these areas. Given the number and size of the areas of interest, an economical and consistent 
method for mapping impervious surface area is needed.   
 
Since the formulation by Ridd (1995) of a conceptual model of urban landscapes as a spectral 
mixture of vegetation, impervious surfaces and soil, a growing number of researchers have used 
Landsat data to map impervious surface area.  A variety of approaches, including spectral 
mixture analysis (Wu and Murray, 2003; Wu, 2004, Lu and Weng, 2006), regression tree 
modeling (Yang et al., 2003a, b; Xian and Crane, 2005), decision tree classification Doughtery et 
al., 2004), subpixel classification (Civco et al., 2002), neural network classification (Civco and 
Hurd, 1997), and  regression (Bauer et al., 2004, 2005) have shown that Landsat remote sensing 
has the potential for mapping and monitoring impervious surface area.  Landsat Thematic 
Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data have several advantages for 
this application:  synoptic view of multi-county areas, digital, GIS compatible data, availability 
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of data since 1984, and economical costs.   
 
In an urban area where most pixels of Landsat data are mixed pixels with mixtures of vegetation 
(particularly grass and trees), water, and impervious surfaces, we believe the best approach is to 
consider impervious as a continuous variable. By treating impervious as a continuous variable, 
the errors associated with assigning a mixed pixel to a single nominal class with a range of 
impervious amounts or in assigning an average impervious value to each land cover/use class are 
avoided. Our approach has been to use a regression model to estimate the percent of impervious 
for each pixel. The theoretical basis for the approach is illustrated in Figure 1.  The greenness 
component of the tasselled cap transformation of Landsat TM/ETM+ data is sensitive to the 
amount of green vegetation and inversely related to the amount of impervious surface area. The 
resulting classification provides a continuous range of impervious area from 0 to 100%.  
 
This chapter describes the methods and results for estimation and mapping of impervious surface 
area, using multiple regression modeling, for the state of Minnesota for two time periods, 1990 
and 2000. Minnesota has a wide variety of rural and urban landscapes, making it a near ideal 
setting to implement and evaluate the use of Landsat remote sensing for land cover and 
impervious surface mapping. The rural areas include agricultural cropland, forests and wetlands 
cover types, interspersed with towns. The urban areas range from low to high intensity 
development and from small towns in rural areas to regional center cites to the Twin Cities 
metropolitan area. Although the primary impetus for our work has been to quantify and map 
impervious surface area in support of watershed management and planning, imperviousness is 
also important in relation to aesthetics, habitat and urban climate.  
 
 
2.  METHODS 
 
Landsat TM/ETM+ digital imagery were acquired and analyzed for two time periods, 1990 and 
2000. The key steps in the procedures were image acquisition; rectification, land cover 
classification, development and application of a regression model relating percent impervious to 
Landsat TM tasselled cap greenness, and accuracy assessment (Figure 2). Image processing was 
performed in ERDAS Imagine, GIS operations in ArcGIS, and statistical analyses in SAS. 
 
2.1 Landsat Image Acquisition, Rectification and Land Cover Classification 
Nineteen images Landsat images are required to cover the state of Minnesota. Selection of clear, 
cloud and haze-free, imagery was a high priority and the selected images had only a few areas 
with clouds. In those areas, the clouds and cloud shadows were manually digitized to create a 
cloud mask that was overlaid on the impervious classification and all pixels within it were 
assigned a value of zero.  It should be noted, however, that there were very few areas where 
clouds and urban overlapped. 
 
The 19 images were rectified to the Universal Transverse Mercator (UTM) coordinate and 
projection system using approximately 35 ground control points per image and nearest neighbor 
resampling to a 30-meter pixel size with an RMS error of 1/4 pixel (7.5-meters) or less. The 
coordinates of the final images were adjusted to values evenly divisible by 30. Following 
rectification the imagery was transformed to unsigned 8-bit Landsat TM/ETM+ tasselled cap 
values (Crist and Cicone, 1984; Huang et al., 2002).   
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Our approach for mapping impervious surfaces applies an impervious estimation model to 
developed and urban areas, thereby requiring a concurrent land cover map to separate rural areas 
from developed/urban areas.  We used a multitemporal, multispectral image classification with a 
combination of spring, summer and fall Landsat TM images acquired in ~2000 to classify land 
cover. The images were stratified into spectrally consistent classification units (SCCU) based on 
the Landsat image acquisition dates and paths, ecoregions, and vegetation phenology (Figure 3). 
The tasselled cap features of greenness, brightness, and wetness features for the three-date 
multitemporal images were used with a k-nearest (kNN) classifier  to generate a land cover 
classification of the state  with seven classes: agriculture, grassland, forest, wetland, water, 
extraction, and urban. The kNN classifier assigns each unknown pixel of the satellite image the 
attributes of the most similar reference pixels for which field data exists. The similarity is 
defined by the Mahalanobis distances between classes. The kNN method has proven to be an 
accurate and cost-efficient method for extending field inventory data to landscape scales 
(McRoberts et al., 2002). The average statewide overall accuracy for the level 1 cover type 
classifications was 84.5% with a Kappa statistic of 0.81. The average producer and user 
accuracies for the urban class were 91.7 and 95.4%, respectively. 
 
2.2 Development of Impervious Surface Regression Models 
Model calibration sites were selected separately for each Landsat image with approximately 50 
sites for each Landsat image.  The selection of sites was stratified by the range of amounts and 
types of impervious cover (e.g., parks, residential housing with varying densities, commercial, 
and industrial land uses), as well as by variations in amounts and kinds of vegetative cover (e.g., 
grass, forest, shrub).  Stratification by vegetation cover type was done to account for seasonal 
variability in greenness between vegetative cover types.   
 
The calibrations sites were typically 40 to 100 Landsat pixels, or approximately 2.5 to 10 ha in 
size.  Further, the boundaries of the calibration sites were “snapped” to the 30-meter Landsat grid 
to ensure that the calibration sites in the high resolution images matched the Landsat images. The 
impervious surface area of each site digitized from 1991-92 1-meter panchromatic digital 
orthophoto quadrangles (DOQs) for 1990 and from 2003 1-meter color DOQs for 2000 to 
determine the percent impervious surface area within each site. Sites where the land cover or 
impervious area might have changed between acquisition of the aerial and Landsat imagery were 
not included. 
 
The measurements of impervious surface area from the calibration sites were used to develop a 
least squares regression model relating percent impervious to the Landsat tasselled cap greenness 
responses for each SCCU image. Greenness is sensitive to the amount of green vegetation and 
therefore is inversely related to the amount of impervious surface area. The summer images 
provide the greatest contrast between impervious and vegetation responses. The images used for 
the impervious classifications are listed in Table 1. 
 
2.3 Impervious Surface Classification  
Classification of impervious surface was performed using an ERDAS Imagine Spatial Model 
with the Landsat tasseled cap greenness values for the calibration sites used as the input values 
for the impervious estimation models. Values generated represented the percent of impervious 
surface within the area of each pixel. 
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To remove estimation bias an inverse calibration was computed from the linear fit of measured 
vs. Landsat-estimated plots and applied to the impervious surface classification (Walsh and 
Burk, 1993). Following the inverse calibration, the accuracy of the Landsat-derived impervious 
surface estimates was reassessed. The inverse calibration process did not significantly affect the 
R2 or standard error values, but decreased the intercept and increased the slope of the regression 
equations, reducing the overall bias of the models and improving the final classification 
accuracy. 
 
The land cover classification was used to mask and reclassify the non-urban areas to zero percent 
impervious surface values. The 2000 land cover classification map was utilized as the primary 
identifier of urban in order to have consistent comparisons of the urban areas between the two 
years. We assumed that areas identified as urban in 2000, but not developed in 1990, would have 
a high greenness value (due to vegetative cover) in the 1990 imagery and would be modeled as 
having low to no impervious surface in the 1990 images. However, areas of bare soil in 
agricultural fields in 1990 that changed to urban by 2000 would have low greenness values in 
each date causing errors in the modeling of impervious surface for 1990. A land cover map for 
the early 1990’s, the Minnesota GAP land cover classification (Lillesand, et al., 1998; Minnesota 
Department of Natural Resources (DNR), 2002), was used to remove the cropland and grassland 
areas from the areas considered as urban for 1990 to minimize this error.  
 
Mines (gravel and sand quarries and iron ore open pit mines), considered as developed or urban 
in the 2000 land cover classifications, were identified for further processing in the impervious 
surface classification. Bare soil is classified in the impervious models as having a high degree of 
impervious surface due to its low greenness value. Much of the area of mines is bare soil, gravel 
and related materials, making separation of the impervious surface from bare soil difficult. Data 
identifying the location and extent of all mines in the state does not exist, however, there were 
data produced by the Minnesota DNR–Division of Lands and Minerals that identified the 
locations of active mining areas in the Mesabi Iron Range where the majority of open pit mines 
are located. This dataset was used to force the pixel values that fell within the iron mines data to 
an impervious value of zero.   
 
The last processing procedure established a minimum and maximum for the modeled impervious 
values. Although the regression modeled estimate of percent impervious for a pixel might be less 
than 0% or more than 100% that is not physically possible. Therefore, pixels with estimated 
impervious surface values greater than 100% were reclassified to 100% impervious and those 
with less then 0% were reclassified as 0% impervious.  
 
2.4 Accuracy Assessment 
An independent random sample of approximately 25 accuracy assessment sites was selected 
from each of the Landsat images. The impervious surface values for these sites were determined 
in the same manner as the calibration sites described above. These sites were used for performing 
inverse calibration to remove estimation bias and to measure the accuracy of the final Landsat-
derived impervious surface estimates. Accuracy was evaluated by regression analyses of 
measured vs. predicted amounts of impervious area. 
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3.  RESULTS AND DISCUSSION 
 
We have found a strong relationship between Landsat tasselled cap greenness and percent 
impervious surface area. An example of the relationship of greenness to percent impervious 
surface is shown in Figure 4. The second order regression model has an R2 of 0.91 and standard 
error of 10.7. By considering greenness and percent impervious area as continuous variables we 
can use a regression model to estimate the percent impervious area of each Landsat pixel. The 
resulting classification provides a continuous range of impervious surface area from 0 – 100%. 
Figure 5 evaluates the agreement between the measured and Landsat-estimated percent 
impervious area for the same image as in Figure 4 following the inverse calibration. Similar 
results were obtained for the other 1990 and 2000 images. Figure 6 compares part of a DOQ 
image and the Landsat classification of percent impervious at the pixel level for an urban area. 
Although the Landsat classification is at a coarse resolution compared to the DOQ, the 
correspondence of features, particularly the pattern of streets and other urban features such as 
parks, residential areas and commercial and industrial areas, is readily apparent in the two 
images.  
 
The statistics for all of the images for both the 1990 and 2000 classifications were consistent 
with R2 values ranging from 0.80 – 0.94 and standard errors of 7.7 to 15.9 (Table 2). Figure 7 
combines the data from all classifications for 1990 and 2000 to assess the overall accuracy of the 
Landsat estimates. The overall agreement between measured and Landsat estimates of percent 
impervious was high for both time periods with R2 values of 0.86 and standard errors of 11.8 and 
11.7. 
 
The statistics, as well as the image comparisons, of Landsat estimates and DOQ measurements of 
impervious area indicate strong agreement; however, there are several known sources of error.  
These include:  (1) Land cover classification errors in urban / developed vs. rural / non-urban 
areas. Our approach estimates impervious for only the urban class so errors in classification of 
urban vs. non-urban will lead to errors in the location and amount of impervious area. (2) Bare 
soil is spectrally similar to impervious surfaces. Although we used summer Landsat images when 
there is relatively little bare soil, some still is present and likely is misclassified as impervious. 
(3) Tree cover that obscures impervious areas. Although tree-covered areas are included in the 
calibration models, they are still a likely source of error. However, the error was less than 6% in 
a preliminary evaluation of this affect in an urban area with varying amounts of tree cover. (4) 
Differences in image acquisition dates and vegetation condition and phenology within images. 
We used mostly August images, but several are early September that likely had somewhat less 
greenness for grass that was not irrigated than for irrigated lawns.  Similarly early senescing trees 
would have less greenness.  Both these conditions may cause an overestimate of imperviousness. 
 
Examples of the impervious classifications and change maps for two areas, St. Cloud and 
Rochester, in east central and southeast Minnesota that are experiencing significant growth, are 
shown in Figure 8.  The growth of urban area and accompanying increases in amount of 
impervious surface area are readily apparent with a 40% increase for St. Cloud and 28% for 
Rochester. The large area covered by the classifications makes it impossible to show here their 
relevant spatial detail, especially at county to state scales. However, maps of the entire state with 
capability to roam and zoom can be viewed at: http://land.umn.edu/, along with statistics on 
amounts and changes in impervious area. The maps and statistics can be viewed, printed and/or 



7 

  

downloaded for county, city/township, ecoregion, watershed, and lakeshed units. 
 
Table 3 lists the amount of impervious surface area for several representative cities, ecoregions, 
watersheds, and the state.  Between 1990 and 2000 the amount of impervious area for the entire 
state increased 118,464 ha from 1.31 to 1.88% of the total land area, a 44% increase.  However, 
it is the increases at the local, city and watershed scales that are most critical to the water quality 
and other environmental effects. At the major watershed level, 20 of 81 watersheds had increases 
in total impervious area of more than 100% between 1990 and 2000, with 23 experiencing 
increases of 50-99% and 22 with 10-49%.  Only 16 had increases of less than 10% or a small 
decrease.  At the city scale, many cities, especially in the suburbs surrounding Minneapolis-St. 
Paul, as well as in regional center cities, had increases of 50% or more.   
 
However, increases are not restricted to the larger urban centers. The area and degree of 
imperviousness also increased in and around many of the smaller towns. Of particular concern is 
the lake rich areas of northern Minnesota, where, for example, in the Northern Lakes and Forest 
Ecoregion, the impervious area increased more than 13,000 hectares, 32.5% increase.  
Impervious cover increased about 56% in 25 lake watersheds in north central Minnesota with 
about 1-4 % of the watersheds being impervious.   In the Crow River Watershed (the Crow River 
is an impaired water body for one to three parameters) west of the Twin Cities,  23 cities and 
towns and seven associated townships had impervious area increases of 48% for the municipal 
areas and 129% for the townships.  In 71 non-Twin Cities metro area cities and associated 
townships, the amount of imperviousness increased 69%. These examples illustrate that 
relatively large percentage increases in impervious cover have been occurring over the past 
decade and that watershed management efforts may need more rapid updating of land cover 
information than on 10 or 20 year cycles.   
 
 
4.  CONCLUSIONS 
 
A strong relationship between impervious surface area and greenness enables percent impervious 
area on a pixel basis to be mapped with Landsat TM/ETM+ data.  Classification of the Landsat 
data provides a means to map and quantify the degree of impervious surface area, an indicator of 
environmental quality, over large geographic areas and over time at modest cost. This chapter 
has described work concentrated on mapping imperviousness over large areas using Landsat 
data; however, we have previously reported (Sawaya et al., 2003) that the same methods can be 
successfully applied to high resolution IKONOS satellite imagery of local areas.  

 
Although we are at an early stage in analysis of spatial and temporal patterns of urban growth 
and imperviousness, the Minnesota Pollution Control Agency is incorporating the impervious 
cover data, obtained from Landsat satellite remote sensing, into watershed management efforts 
and stormwater best management practice planning and monitoring efforts. An increasing 
number of future community stormwater management efforts are expected to have phosphorus 
and sediment loading rates determined by formal TMDL allocation processes in order to restore 
and/or protect receiving water quality and habitat – based on impervious cover and associated 
stormwater management practices. The consistent impervious surface data provided by the 
Landsat classifications for over 200 MS4 communities, covered by the phase II stormwater 
regulations, is a new foundational data layer needed for refining watershed management 
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strategies for protection as well as for rehabilitation.  
 
Increasing population, new development in lake and river recreation areas, and growing cities 
and towns all translate into increasing impervious surface areas across Minnesota.  The Landsat 
classifications provide critically important, consistent and multi-date, impervious surface area 
maps and statistics for any area of Minnesota.  It is envisioned that these data and updates, will 
be an important foundation of Minnesota’s stormwater management efforts. As urban stormwater 
runoff from impervious areas can have profound negative impacts to receiving waters, it is a 
critical new component of statewide stormwater education and management efforts.   
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Table 1. Landsat image acquisition dates and paths and rows. Strata refer to the maps in Figure 3. 

~1990 ~2000  
Strata Date Path / Row Date Path / Row 

1 30 August 1990 29 / 28-29 07 August 2001  26 / 27 

2 30 August 1990 29 / 27 12 September 2000  27 / 26-28 

3 30 August 1990 29 / 26 26 August 2000  28 / 26 

4 04 September 1991 27 / 30 28 August 2001  29 / 26-28 

5 04 September 1991 27 / 29 24 August 2000  30 / 27 

6 26 August 1991 28 / 29 24 August 2000  30 / 26 

7 07 August 1990 28 / 30 10 August 2000  28 / 30 

8 07 August 1990 28 / 27 10 August 2000  28 / 29 

9 10 August 1991 28 / 26 28 August 2001  29 / 29 

10 04 September 1991 27 / 26-28 10 August 2000  28 / 28 

11 07 August 1990 28 / 28 26 August 2000  28 / 27 

12 09 August 1990 26 / 27 12 September 2000  27 / 29-30 

13 25 August 1990 26 / 29-30 11 September 1999  26 / 30 

14 23 July 1991 30 / 26-27 11 September 1999  26 / 29 
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Table 2. Accuracy of impervious surface classifications by strata and year. The locations of 
strata are shown in Figure 2. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1990 2000  
Strata R2 Std. Error R2 Std. Error 

1 0.86 11.2 0.94 7.7 

2 0.89 11.2 0.87 8.9 

3 0.90 10.3 0.87 11.7 

4 0.83 12.8 0.82 13.4 

5 0.82 12.9 0.94 7.8 

6 0.89 10.2 0.92 8.9 

7 0.94 7.8 0.90 10.1 

8 0.85 12.9 0.85 12.8 

9 0.87 12.8 0.89 9.6 

10 0.86 9.4 0.91 9.4 

11 0.84 12.0 0.89 10.8 

12 0.81 15.2 0.81 13.1 

13 0.82 14.7 0.80 13.9 

14 0.90 9.7 0.80 15.9 
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Table 3. Impervious surface area (ISA) statistics for selected cities, counties, ecoregions, 
watersheds, and state of Minnesota for 1990 and 2000. 
 
 

Area 
Total Area 

(ha) 
1990 ISA 

(ha) 
2000 ISA 

(ha) 
Change 

(ha) 
1990  

% ISA 
2000  

% ISA 
Percent 
Change 

St. Cloud  10,405 2,045 2,862 817 20.25 28.09 39.95 

Rochester  11,932 2,285 2,921 636 20.16 24.74 27.83 

Alexandria  2,562 377 667 290 15.58 27.41 76.92 

Bemidji  3,448 607 676 69 19.21 21.27 11.37 

Brainerd 2,936 514 568 54 18.47 20.24 10.51 

Fergus Falls  3,878 399 625 226 11.14 17.39 56.64 

Elk River  11,343 793 1,278 485 7.25 11.55 61.16 

Sauk Rapids 1,409 316 483 167 23.67 36.06 52.85 

Duluth  22,600 3,047 3,032 -15 17.33 17.23 -0.49 

Mankato  4,290 929 1,389 460 21.81 32.69 49.52 

Owatonna  3,436 746 973 227 21.83 28.44 30.43 

Northern Lakes & 
Forest Ecoregion 6,823,378 41,308 54,738 13,430 0.67 0.88 32.51 

N. Central Hardwoods 
Ecoregion 4,332,968 109,779 158,808 49,029 2.70 3.89 44.66 

Western Corn Belt 
Ecoregion 4,152,960 50,195 88,895 38,700 1.22 2.16 77.10 

Mississippi River – 
St. Cloud Watershed 290,477 7,330 15,671 8,341 2.64 5.58 113.79 

St. Croix River - 
Stillwater Watershed 238,997 4,774 9,107 4,333 2.12 4.03 90.76 

Canon River 
Watershed 380,867 5,530 9,821 4,291 1.49 2.64 77.59 

Crow Wing River 
Watershed 503,935 3,925 6,596 2,671 0.84 1.40 68.05 

State 21,852,928 269,649 388,700 119,051 1.31 1.88 44.15 
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Figure 1. Conceptual model for estimating percent impervious surface area at the pixel level. 
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Figure 2. Flowchart of image processing and classification procedures for mapping impervious 
surface area. 
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Figure 3. Strata, based on Landsat image acquisition dates, ecoregions and vegetation 
phenology, used for land cover and impervious classifications.  The Landsat image paths and 
rows and acquisition dates are listed in Table 1. 
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Figure 4. Example of relationship of Landsat greenness to percent impervious surface area 
(ETM+ data, path 28/row 28, August 10, 2000). 
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Figure 5. Comparison of measured to Landsat estimated impervious surface area (ETM+ data, 
path 28/row 28, August 10, 2000). 
 
 
 



17 

  

 
Figure 6. Comparison of a high resolution DOQ of a local area in Eagan (left) to the Landsat-
derived classification of intensity of impervious surface area. 
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Figure 7. Evaluation of accuracy assessment statistics for 1990 (top) and 2000 (bottom) for the 
entire state. 
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Figure 8. Impervious classifications of St. Cloud and Rochester for 1990 and 2000 and change 
maps. 
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